Virus denial has to ignore all modern advances in virology

 

Scientific Foundations of Virology: A Multi-Disciplinary Case

 


Introduction

 

Virology, as a field of science, has been the subject of increasing scrutiny by critics who argue that its foundational claims lack empirical evidence. A common refrain among sceptics is that viruses have never been isolated, visualized, or proven to cause disease without circular reasoning or methodological flaws. This document directly addresses and counters those critiques by synthesising a wide range of peer-reviewed scientific evidence, demonstrating that viruses are real using:

1. Microscopy-Based Evidence of Viruses

2. Isolation and Single-Virus Analysis Using Microfluidics

3. De Novo Genome Sequencing of Viruses

4. Proving virus-induced cytopathic effects (CPE) from other causes of cell death

5. Distinguishing authentic virions from subcellular debris

6. Host to host transmission

7. Fulfilling Koch's Postulates for Viruses

8. The Role of Converging Evidence


1. Microscopy-Based Evidence of Viruses

Transmission Electron Microscopy (TEM) has enabled the direct visualization of viruses since the 1930s. Its nanometer-scale resolution allows scientists to identify virus morphology and structures within infected tissues. Even though TEM does not work with living tissue, the remains of dead entities are always identifiable. This is how forensic science works.

·      Roingeard, 2018: Highlights the role of TEM in identifying and diagnosing viral infections across decades. PMC7169071

Cryo-Electron Microscopy (Cryo-EM) CryoEM freezes the sample into a glass-like state and images them using an electron microscope, allowing for high-resolution 3D reconstructions of structures in a near-native state.

·      Wrapp 2020 – Confirmed receptor binding and fusion mechanism of SARS-2. NIH 2020

·      Leigh, 2021 – Imaging and visualizing SARS-CoV-2 in a new era for structural biologyNIH 2021

Atomic Force Microscopy (AFM) AFM is able to work with live tissue and allows for the physical probing of virus particles at the nanoscale, with a tiny needle, confirming their shape, size, and mechanical properties.

·      Kuznetsov, 2001: Demonstrated direct interaction with viral surfaces using AFM. NIH 2001

Lattice Light Sheet Microscopy Works with live tissue in real-time allowing observation of virus entry into host cells.

·      Joseph, 2022: Visualized influenza virus bending and penetrating host cell membranes with the aid of Epsin. PMC9505878

Confocal Microscopy Confocal microscopy works with live tissue. It enhances spatial resolution, allowing 3D imaging of virus-host interactions.

·      McClelland, 2021: Used to track virus replication cycles and entry mechanisms. PMC8546218


2. Isolation and Single-Virus Analysis Using Microfluidics

Microfluidics is a cutting-edge technology capable of controlling tiny drips of a sample just big enough to hold a single virus. It is used to isolate and analyse individual viral particles directly from samples.

·      Liu, 2020: Demonstrated single-virus analysis and genomic characterization without culturing. PMC8942716

·      Jamiruddin, 2022: This review highlights microfluidic approaches to virus detection that include robust internal controls, reducing false attribution of cell death. NIH 2022

·      Garnage, 2022: Used a microfluidic assay to select active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral particles (VPs), which were defined as intact particles with an accessible angiotensin-converting enzyme 2 receptor binding domain (RBD) on the spike (S) protein, from clinical samples. NIH 2022


3. De Novo Genome Sequencing of Viruses

Contrary to critiques of reference-based genome assembly, de novo sequencing reconstructs genomes without prior templates.

  • Illumina HiSeq Datasheet: Describes de novo capabilities in virus genome reconstruction. Illumina
  • Thermo Fisher Guide: Outlines workflows for viral de novo genome sequencing. Thermo Fisher
  • Yilmaz, 2011: Discusses single-cell genome sequencing, including viruses. PMC3318999
  • Allen, 2011: Introduced “Single Virus Genomics,” sequencing entire genomes from isolated virus particles. Semantic Scholar PDF
  • Wong, 2013: Performed de novo assembly of 23 full-length norovirus genomes. Virology Journal
  • Han, 2015: A new platform that integrates drop-based microfluidics and computational analysis was developed for purification of a single viral species from a mixed sample and retrieval of its complete genome sequence. NIH 2015
  • Ciuffi, 2016: Single-Cell Genomics for VirologyNIH 2016
  • Beaulaurier, 2020: Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. NIH 2020
  • Batista, 2020: Whole Genome Sequencing of Hepatitis A Virus Using a PCR-Free Single-Molecule Nanopore Sequencing ApproachNIH 2020
  • Nishikawa, 2024: Developed a new single-viral whole-genome sequencing platform with microfluidic-generated gel beads. NIH 2024
  • Cowell, 2024: We have developed DE-flowSVP to achieve extremely high throughput, direct profiling of as many as 105 IAV particles in a single-day experiment and enabled quantitative profiling of reassortment propensity between divergent strains for the first time. NIH 2024

Mass Spectrometric Identification

Employs mass spectrometry to characterize viral proteins isolated from infected samples, thereby validating genomic predictions.

·      Renuse 2021: Used an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Lancet 2021


4. Proving virus-induced cytopathic effects (CPE) from other causes of cell death

·      McCoy, 2005: Used embedded impedance microsensors to detect changes in cell-surface integrity, such as cell rounding and detachment, which are indicative of CPE. NIH 2005

·      Christfort, 2024: Used centrifugal microfluidic platform designed to study herpes simplex virus type 1 (HSV-1) infections in periodontal ligament (PDL) cells NIH 2024

·      Su, 2022: Cultured various cell lines in parallel allowing for rapid identification of cells permissive to specific viruses, such as enterovirus 71 (EV71) and influenza A virus H1N1. NIH 2022

·      Lindeboom, 2024: Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. NIH 2024

·      Hou, 2024: we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. NIH 2024

·      Liu, 2024: Single-Cell Virology: On-Chip, Quantitative Characterization of the Dynamics of Virus Spread from One Single Cell to AnotherMDPI 2024


5. Distinguishing authentic virions from subcellular debris

Researchers have employed various protection assays to differentiate between viral particles and contaminating microvesicles.

·      Kong, 2010 – Proteomic analysis of purified coronavirus infectious bronchitis virus particles  NIH 2010

·      Varjak, 2013 – Magnetic fractionation and proteomic dissection of cellular organelles occupied by the late replication complexes of Semliki Forest virus NIH 2013

·      Rukundo, 2023 – Convolutional Neural Networks for Automatic Detection of Intact Adenovirus from TEM Imaging with Debris, Broken and Artefacts ParticlesarXiv 2023


6. Host to host transmission

·      Patel, 2021: Combined, these studies demonstrate direct contact is the predominant mode of transmission of the USA-WA1/2020 isolate in ferrets and that immunity to SARS-CoV-2 is maintained for at least 56 days. NIH 2021

·      Hosie, 2021: Human Infection of cats during the 2020 COVID-19 Pandemic. NIH 2021

·      Herfst, 2012: Airborne Transmission of Influenza A/H5N1 Virus Between Ferrets. NIH 2012

·      Macinnes, 2011: Transmission of aerosolized seasonal H1N1 influenza A to ferrets. NIH 2011

·      Charlton, 1979: Experimental oral and nasal transmission of rabies virus in mice. NIH 1979

·      Setien, 1998: Experimental rabies infection and oral vaccination in vampire bats (Desmodus rotundus). NIH 1998

·      Cliquet, 2009: Experimental infection of foxes with European Bat Lyssaviruses type-1 and 2. NIH 2009

·      Port, 2022: Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. NIH 2023

·      Greenhaigh, 2021: Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet 2021


7. Fulfilling Koch's Postulates for Viruses

Numerous studies have fulfilled modern adaptations of Koch's postulates for viruses, proving causality beyond reasonable doubt.

SARS-CoV-2:

·      Bhunjun, 2021 - Importance of Molecular Data to Identify Fungal Plant Pathogens and Guidelines for Pathogenicity Testing Based on Koch’s Postulates MDPI 2021

·      Chan, 2020 – Simulation of the clinical and pathological manifestations of Coronavirus Disease 2019 (COVID-19) in golden Syrian hamster model: implications for disease pathogenesis and transmissibility NIH 2020

·      Bao, 2020 - Our results demonstrate the pathogenicity of SARS-CoV-2 in mice, which, together with previous clinical studies, completely satisfies Koch’s postulates7 and confirms that SARS-CoV-2 is the pathogen responsible for COVID-19. Nature 2020  Zhu, 2020 - NIH 2020

Plant Viruses:

·      Wege, 2000 – Fulfilling Koch's postulates for Abutilon mosaic virus NIH 2000Tomato yellow leaf curl virus:

·      Sánchez-Campos, 2013 – Fulfilling Koch's postulates confirms the monopartite nature of tomato leaf deformation virus: a begomovirus native to the New World NIH 2013

Animal Viruses:

Chicken Parvovirus: Using pathogen-free chicks

·      Nunez, 2020 – Molecular Characterization and Pathogenicity of Chicken Parvovirus (ChPV) in Specific Pathogen-Free Chicks Infected Experimentally NIH 2020

Each follows the required chain:

  1. Isolation of the virus
  2. Inoculation into a healthy host
  3. Reproduction of disease symptoms
  4. Re-isolation of the same virus

8. The Role of Converging Evidence

Science does not hinge on a single paper. Instead, it derives strength from:

  • Replication across laboratories
  • Independent methodologies reaching the same conclusions
  • Technological evolution reducing reliance on assumptions

The technologies and studies cited above span decades, disciplines, and continents. Together, they form a unified, independently validated body of knowledge.


Conclusion

Critiques claiming virology lacks a scientific foundation fail to account for the sheer weight of converging empirical evidence. From nanotechnology and de novo genome reconstruction to live-cell imaging and causal infection models, the reality of viruses as physical, pathogenic biological entities is not just supported — it is overwhelmingly established.

Even one solid demonstration of viral existence and causality is sufficient. This field has hundreds.

Thus, the claim that virology is pseudoscience is not only incorrect — it is refuted by the very scientific standards it invokes.

 

References:

Allen, L. Z., Ishoey, T., Novotny, M. A., McLean, J. S., Lasken, R. S., & Williamson, S. J. (2011). Single virus genomics: a new tool for virus discovery. PloS one6(3), e17722. https://doi.org/10.1371/journal.pone.0017722

Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., Qu, Y., Li, F., Lv, Q., Wang, W., Xue, J., Gong, S., Liu, M., Wang, G., Wang, S., Song, Z., … Qin, C. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature583(7818), 830–833. https://doi.org/10.1038/s41586-020-2312-y

Batista, F. M., Stapleton, T., Lowther, J. A., Fonseca, V. G., Shaw, R., Pond, C., Walker, D. I., van Aerle, R., & Martinez-Urtaza, J. (2020). Whole Genome Sequencing of Hepatitis A Virus Using a PCR-Free Single-Molecule Nanopore Sequencing Approach. Frontiers in microbiology11, 874. https://doi.org/10.3389/fmicb.2020.00874

Beaulaurier, J., Luo, E., Eppley, J. M., Uyl, P. D., Dai, X., Burger, A., Turner, D. J., Pendelton, M., Juul, S., Harrington, E., & DeLong, E. F. (2020). Assembly-free single-molecule sequencing recovers complete virus genomes from natural microbial communities. Genome research30(3), 437–446. https://doi.org/10.1101/gr.251686.119

Bhunjun, C. S., Phillips, A. J. L., Jayawardena, R. S., Promputtha, I., & Hyde, K. D. (2021). Importance of Molecular Data to Identify Fungal Plant Pathogens and Guidelines for Pathogenicity Testing Based on Koch's Postulates. Pathogens (Basel, Switzerland)10(9), 1096. https://doi.org/10.3390/pathogens10091096

Chan, J. F., Zhang, A. J., Yuan, S., Poon, V. K., Chan, C. C., Lee, A. C., Chan, W. M., Fan, Z., Tsoi, H. W., Wen, L., Liang, R., Cao, J., Chen, Y., Tang, K., Luo, C., Cai, J. P., Kok, K. H., Chu, H., Chan, K. H., Sridhar, S., … Yuen, K. Y. (2020). Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America71(9), 2428–2446. https://doi.org/10.1093/cid/ciaa325

Charlton, K. M., & Casey, G. A. (1979). Experimental oral and nasal transmission of rabies virus in mice. Canadian journal of comparative medicine : Revue canadienne de medecine comparee43(1), 10–15. https://pubmed.ncbi.nlm.nih.gov/427634/

Christfort, J. F., Ortis, M., Nguyen, H. V., Marsault, R., & Doglio, A. (2024). Centrifugal Microfluidic Cell Culture Platform for Physiologically Relevant Virus Infection Studies: A Case Study with HSV-1 Infection of Periodontal Cells. Biosensors14(8), 401. https://doi.org/10.3390/bios14080401

Ciuffi, A., Rato, S., & Telenti, A. (2016). Single-Cell Genomics for Virology. Viruses8(5), 123. https://doi.org/10.3390/v8050123

Cliquet, F., Picard-Meyer, E., Barrat, J., Brookes, S. M., Healy, D. M., Wasniewski, M., Litaize, E., Biarnais, M., Johnson, L., & Fooks, A. R. (2009). Experimental infection of foxes with European Bat Lyssaviruses type-1 and 2. BMC veterinary research5, 19. https://doi.org/10.1186/1746-6148-5-19

Cowell, T. W., Puryear, W., Chen, C. L., Ding, R., Runstadler, J., & Han, H. S. (2024). Unbiased, Cell-free Profiling of Single Influenza Genomes at High-throughput. bioRxiv : the preprint server for biology, 2024.02.03.578479. https://doi.org/10.1101/2024.02.03.578479

Gamage, S. S. T., Pahattuge, T. N., Wijerathne, H., Childers, K., Vaidyanathan, S., Athapattu, U. S., Zhang, L., Zhao, Z., Hupert, M. L., Muller, R. M., Muller-Cohn, J., Dickerson, J., Dufek, D., Geisbrecht, B. V., Pathak, H., Pessetto, Z., Gan, G. N., Choi, J., Park, S., Godwin, A. K., … Soper, S. A. (2022). Microfluidic affinity selection of active SARS-CoV-2 virus particles. Science advances8(39), eabn9665. https://doi.org/10.1126/sciadv.abn9665

Greenhalgh, T., Jimenez, J. L., Prather, K. A., Tufekci, Z., Fisman, D., & Schooley, R. (2021). Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet (London, England)397(10285), 1603–1605. https://doi.org/10.1016/S0140-6736(21)00869-2

Han, H. S., Cantalupo, P. G., Rotem, A., Cockrell, S. K., Carbonnaux, M., Pipas, J. M., & Weitz, D. A. (2015). Whole-Genome Sequencing of a Single Viral Species from a Highly Heterogeneous Sample. Angewandte Chemie (International ed. in English)54(47), 13985–13988. https://doi.org/10.1002/anie.201507047

Herfst, S., Schrauwen, E. J., Linster, M., Chutinimitkul, S., de Wit, E., Munster, V. J., Sorrell, E. M., Bestebroer, T. M., Burke, D. F., Smith, D. J., Rimmelzwaan, G. F., Osterhaus, A. D., & Fouchier, R. A. (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. Science (New York, N.Y.)336(6088), 1534–1541. https://doi.org/10.1126/science.1213362

Hosie, M. J., Hofmann-Lehmann, R., Hartmann, K., Egberink, H., Truyen, U., Addie, D. D., Belák, S., Boucraut-Baralon, C., Frymus, T., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M. G., Tasker, S., Thiry, E., & Möstl, K. (2021). Anthropogenic Infection of Cats during the 2020 COVID-19 Pandemic. Viruses13(2), 185. https://doi.org/10.3390/v13020185

Hou, J., Wei, Y., Zou, J., Jaffery, R., Sun, L., Liang, S., Zheng, N., Guerrero, A. M., Egan, N. A., Bohat, R., Chen, S., Zheng, C., Mao, X., Yi, S. S., Chen, K., McGrail, D. J., Sahni, N., Shi, P. Y., Chen, Y., Xie, X., … Peng, W. (2024). Integrated multi-omics analyses identify anti-viral host factors and pathways controlling SARS-CoV-2 infection. Nature communications15(1), 109. https://doi.org/10.1038/s41467-023-44175-1

Illumina HiSeq Datasheet https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2500.pdf

Jamiruddin, M. R., Meghla, B. A., Islam, D. Z., Tisha, T. A., Khandker, S. S., Khondoker, M. U., Haq, M. A., Adnan, N., & Haque, M. (2022). Microfluidics Technology in SARS-CoV-2 Diagnosis and Beyond: A Systematic Review. Life (Basel, Switzerland)12(5), 649. https://doi.org/10.3390/life12050649

Joseph, J. G., Mudgal, R., Lin, S. S., Ono, A., & Liu, A. P. (2022). Biomechanical Role of Epsin in Influenza A Virus Entry. Membranes12(9), 859. https://doi.org/10.3390/membranes12090859

Kuznetsov, Y. G., Malkin, A. J., Lucas, R. W., Plomp, M., & McPherson, A. (2001). Imaging of viruses by atomic force microscopy. The Journal of general virology82(Pt 9), 2025–2034. https://doi.org/10.1099/0022-1317-82-9-2025

Leigh, K. E., & Modis, Y. (2021). Imaging and visualizing SARS-CoV-2 in a new era for structural biology. Interface focus11(6), 20210019. https://doi.org/10.1098/rsfs.2021.0019

Lindeboom, R. G. H., Worlock, K. B., Dratva, L. M., Yoshida, M., Scobie, D., Wagstaffe, H. R., Richardson, L., Wilbrey-Clark, A., Barnes, J. L., Kretschmer, L., Polanski, K., Allen-Hyttinen, J., Mehta, P., Sumanaweera, D., Boccacino, J. M., Sungnak, W., Elmentaite, R., Huang, N., Mamanova, L., Kapuge, R., … Teichmann, S. A. (2024). Human SARS-CoV-2 challenge uncovers local and systemic response dynamics. Nature631(8019), 189–198. https://doi.org/10.1038/s41586-024-07575-x

Liu, W., He, H., & Zheng, S. Y. (2020). Microfluidics in Single-Cell Virology: Technologies and Applications. Trends in biotechnology38(12), 1360–1372. https://doi.org/10.1016/j.tibtech.2020.04.010

Liu, W., Wilke, C. O., Arnold, J. J., Sotoudegan, M. S., & Cameron, C. E. (2024). Single-Cell Virology: On-Chip, Quantitative Characterization of the Dynamics of Virus Spread from One Single Cell to Another. Viruses16(11), 1659. https://doi.org/10.3390/v16111659

MacInnes, H., Zhou, Y., Gouveia, K., Cromwell, J., Lowery, K., Layton, R. C., Zubelewicz, M., Sampath, R., Hofstadler, S., Liu, Y., Cheng, Y. S., & Koster, F. (2011). Transmission of aerosolized seasonal H1N1 influenza A to ferrets. PloS one6(9), e24448. https://doi.org/10.1371/journal.pone.0024448

McClelland, R. D., Culp, T. N., & Marchant, D. J. (2021). Imaging Flow Cytometry and Confocal Immunofluorescence Microscopy of Virus-Host Cell Interactions. Frontiers in cellular and infection microbiology11, 749039. https://doi.org/10.3389/fcimb.2021.749039

McCoy, M. H., & Wang, E. (2005). Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. Journal of virological methods130(1-2), 157–161. https://doi.org/10.1016/j.jviromet.2005.06.023

Nishikawa, Y., Wagatsuma, R., Tsukada, Y., Chia-Ling, L., Chijiiwa, R., Hosokawa, M., & Takeyama, H. (2024). Large-scale single-virus genomics uncovers hidden diversity of river water viruses and diversified gene profiles. The ISME journal18(1), wrae124. https://doi.org/10.1093/ismejo/wrae124

N Nuñez, L. F., Santander-Parra, S. H., De la Torre, D. I., Sá, L. R. M., Buim, M. R., Astolfi-Ferreira, C. S., & Piantino Ferreira, A. J. (2020). Molecular Characterization and Pathogenicity of Chicken Parvovirus (ChPV) in Specific Pathogen-Free Chicks Infected Experimentally. Pathogens (Basel, Switzerland)9(8), 606. https://doi.org/10.3390/pathogens9080606

Patel, D. R., Field, C. J., Septer, K. M., Sim, D. G., Jones, M. J., Heinly, T. A., Vanderford, T. H., McGraw, E. A., & Sutton, T. C. (2021). Transmission and Protection against Reinfection in the Ferret Model with the SARS-CoV-2 USA-WA1/2020 Reference Isolate. Journal of virology95(13), e0223220. https://doi.org/10.1128/JVI.02232-20

Port, J. R., Morris, D. H., Riopelle, J. C., Yinda, C. K., Avanzato, V. A., Holbrook, M. G., Bushmaker, T., Schulz, J. E., Saturday, T. A., Barbian, K., Russell, C. A., Perry-Gottschalk, R., Shaia, C., Martens, C., Lloyd-Smith, J. O., Fischer, R. J., & Munster, V. J. (2024). Host and viral determinants of airborne transmission of SARS-CoV-2 in the Syrian hamster. eLife12, RP87094. https://doi.org/10.7554/eLife.87094

Renuse, S., Vanderboom, P. M., Maus, A. D., Kemp, J. V., Gurtner, K. M., Madugundu, A. K., Chavan, S., Peterson, J. A., Madden, B. J., Mangalaparthi, K. K., Mun, D. G., Singh, S., Kipp, B. R., Dasari, S., Singh, R. J., Grebe, S. K., & Pandey, A. (2021). A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine69, 103465. https://doi.org/10.1016/j.ebiom.2021.103465

Roingeard, P., Raynal, P. I., Eymieux, S., & Blanchard, E. (2019). Virus detection by transmission electron microscopy: Still useful for diagnosis and a plus for biosafety. Reviews in medical virology29(1), e2019. https://doi.org/10.1002/rmv.2019

Rukundo, O., Behanova, A., De Feo, R., Ronkko, S., Oja, J. and Tohka, J., 2023. Convolutional Neural Networks for Automatic Detection of Intact Adenovirus from TEM Imaging with Debris, Broken and Artefacts Particles. arXiv e-prints, pp.arXiv-2310. https://arxiv.org/abs/2310.19630

Sánchez-Campos, S., Martínez-Ayala, A., Márquez-Martín, B., Aragón-Caballero, L., Navas-Castillo, J., & Moriones, E. (2013). Fulfilling Koch's postulates confirms the monopartite nature of tomato leaf deformation virus: a begomovirus native to the New World. Virus research173(2), 286–293. https://doi.org/10.1016/j.virusres.2013.02.002

Sétien, A. A., Brochier, B., Tordo, N., De Paz, O., Desmettre, P., Péharpré, D., & Pastoret, P. P. (1998). Experimental rabies infection and oral vaccination in vampire bats (Desmodus rotundus). Vaccine16(11-12), 1122–1126. https://doi.org/10.1016/s0264-410x(98)80108-4

Su, W., Qiu, J., Mei, Y., Zhang, X. E., He, Y., & Li, F. (2022). A microfluidic cell chip for virus isolation via rapid screening for permissive cells. Virologica Sinica37(4), 547–557. https://doi.org/10.1016/j.virs.2022.04.011

Thermo Fisher Guide https://www.thermofisher.com/uk/en/home/life-science/sequencing/dna-sequencing/de-novo-sequencing.html

Wege, C., Gotthardt, R. D., Frischmuth, T., & Jeske, H. (2000). Fulfilling Koch's postulates for Abutilon mosaic virus. Archives of virology145(10), 2217–2225. https://doi.org/10.1007/s007050070052

Wong, T. H., Dearlove, B. L., Hedge, J., Giess, A. P., Piazza, P., Trebes, A., Paul, J., Smit, E., Smith, E. G., Sutton, J. K., Wilcox, M. H., Dingle, K. E., Peto, T. E., Crook, D. W., Wilson, D. J., & Wyllie, D. H. (2013). Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England. Virology journal10, 335. https://doi.org/10.1186/1743-422X-10-335

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.)367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507

Yilmaz, S., & Singh, A. K. (2012). Single cell genome sequencing. Current opinion in biotechnology23(3), 437–443. https://doi.org/10.1016/j.copbio.2011.11.018

Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., Tan, W., & China Novel Coronavirus Investigating and Research Team (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

 

 

 

 

 

 

 

 

 
Total votes: 0